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SUMMARY

In the paper the problem of admissibility of two kinds of estimators of the variance
components appearing in the randomization model used for experiments in block
designs is considered. It is proved, that the intra-block estimator of the variance of
errors is admissible in the class of unbiased estimators. Sufficient conditions are given,
for which the inter-block estimator of the variance of block effects is admissible. The
conditions are given in terms of the incidence matrix of the design. Some examples of
models for which this inter-block estimator is inadmissible are presented. In such cases
it is shown how to improve uniformly the estimator by using one of the admissible
estimators.

KEY WORDS: admissibility, block designs, estimators of variance components, inter-
and intra-block estimation, invariant quadratic unbiased estimators.

1. Introduction

For the two-way classification model corresponding to a block design with random
block effects, a problem of interest is to estimate two variance components, the va-
riance of block effects and the variance of errors. As it has been established by
Baksalary et al. (1990), the existence of the uniformly minimum variance unbiased
estimators is assured only for special block designs. Generally there is a rich choice
of invariant quadratic and unbiased estimators, each of them being admissible with
respect to the quadratic loss. Since there is no preference for any of the admissible
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estimators to be used in practical situations, some additional criteria are taken into ac-
count. Califiski and Kageyama (1991) have considered unbiased variance component
estimators based on the intra-block and on the inter-block analysis. The proposed
estimators are uniquelly given and have, under the corresponding submodels, the de-
sirable MINQUE properties (Sections 3.1 and 3.2 of their paper). However, in some
special cases (as those considered in Section 3.4 of that paper), estimation under the
overall randomization model is relevant. The question then arises whether the va-
riance component estimators derived from the submodels are admissible in the class
of all invariant quadratic and unbiased estimators under the overall model. This is
the main problem considered in the present paper.

2. Mixed model corresponding to a block design

Consider an experiment in which v treatments are applied to n experimental units
arranged in b blocks according to a v x b incidence matrix N with entries n;; > 0. Here
n;; is the number of units corresponding to the (3, 5)-th cell of the matrix, i.e., treated
by the i-th treatment and belonging to the j-th block. Let y;;; be the observation
taken on the I-th unit of the (%, j)-th cell, I = 1,2,...,n;;.

One of the basic assumptions is the additivity of the effects of the treatments
and those of the units, and also of possible technical errors, which can be written for
1=12,..,v,5=1,2,..,band [ = 1,2,...,n;;, as

Yijt = Ti + B; + €iji. (1)

Here 7; is the effect of the i-th treatment, §; is the effect of the j-th block, while €;;;’s
are disturbances including unit and technical errors. As it has been established in a
series of papers by Kala (1989, 1990, 1991) and also in the papers by Caliski and
Kageyama (1991, 1996), following the randomization theory, the expectation and the
covariance matrix of the observed n x 1 vector y can be presented as

E(y) = AT,

Cov(y) = (D'D — N3'1,1,)0% + (I, — Kz'D'D)o2 + I,,02
=D'Do? + 1,0° - N3'1,1,0%, (2)

where 07 = 0% — K02 and 0% = 02 +¢2. Here A’ and D' are the n x v and n. x b
known design matrices of full ranks v and b, respectively, the elements of which are 0
or 1 depending on the ordering of the components of y. Anyway, it can be seen that
AD'=N,A'1, =D'1, =1,,A1, =Nl =r = (r,72,...,7), D1, =N'1, =k =
(K1, k2, ..., ks)', while AA’ = diag{r;} and DD’ = diag{k;} are diagonal matrices
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with the diagonal elements r; = Zj ni; and k; = ), n;j;, respectively (cf. Califiski,
1993, p. 284). The variance components 0%,02 and o2 are assumed to be unknown,
0% represents the variance of block effects, while 02 = 02 +0?2 is the common variance
of the disturbances €;;;, 02 being the variance of unit errors and o2 that of technical
errors. The above model, subsequently called the overall model with the covariance
matrix (2), follows from the basic principles of randomization of the units within Np
available blocks, and of randomized selection of b of them for the experiment. Here
Ky is a weighted harmonic average of the numbers of units within blocks (defined in
Califiski and Kageyama, 1991, p.100).

3. Estimation of variance components

8.1. Submodels

Following Califiski and Kageyama (1991), let the observed vector y be decomposed
as y = y1 + y2 + y3, where y; is the orthogonal projection of y on R; , 1 = 1,2,3,
defined as

R™ = R; + Ry + R,
where
R; = N(D), R2 = N(1,) NR(D'), Rz = R(1L,).

Here for a given matrix A the symbol R(A) stands for the range space of A, while
N(A) for the kernel (null space) of A.
Since the orthogonal projectors on R; are, respectively, ®; = I, — D/(DD’)~!D,
&, = D/(DD')~'D ~ n~1,1/, and ®3 = n~'1,1/,, the decomposition leads to the
following three independent submodels:
(i) intra-block model: E(y1) = ®1A’T, with

Cov(y:) = 02®,, 0® = 02 + 02,
(ii) inter-block model: E(y2) = ®,A’T, with
Cov(yz) = 028;D'D®; + 0’ P2, 0% = 0% — Kz'o2,
(iii) total area model: E(y3) = ®3A’T, with

Cov(ys) = [(n 'K’k — Nz'n)o% — n 'kK'kK7z'02 + 0% ®3.
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8.2. Projectors

For the intra- and inter-block model the squared norm of the vector y;, i = 1,2, can
be decomposed as

Yiyi =Y'®y =y'®:;A'CH A%y +y'®,(I,~A'CT A),y,
where C; = A®;A’. Here C;" stands for the Moore-Penrose inverse of C;, and can

be replaced by any generalized inverse (g-inverse) of it, C], i = 1,2. Denote

I; = &(I, - A'CA)®;, i =1,2.

LEMMA 3.1.
(i) IL, is the orthogonal projector on N'(D) NN (A),
(ii) II3 ds the orthogonal projector on R(D') NN(A).
The proof of Lemma. 3.1 follows from the following proposition.

PROPOSITION 3.1. If ® is the orthogonal projector on an arbitrary subspace £ of R",
then, for a given matriz A such that N(A) CR", and C = ABA’,

II = &(I, - A'C*A)®

is the orthogonal projector on €N N(A).

Proof of Proposition 3.1. Let a € ENN(A), then $a = a, Aa = 0 and in consequence
Ha=a. Forbe€ [ENN(A)]* =L +R(A’) wehave b = c+A'd, c € £L (B¢ = 0),
and ITb = ITA'd = ®A'd — ®A'(APA')*ABA'd = 0. The last equality follows
from the fact that PA'(APA")"A®PA’ = ®A’ (cf. Rao and Mitra 1971, Lemma
226). O

Proof of Lemma 3.1. We find from Proposition 3.1 that IT; is the orthogonal projector
on N(D) N N(A), while IT; is the orthogonal projector on R(D') N A’ A NN(A).
Since 1, € R(A'), it follows that N(A) C N(1,) and R(D’) N N(1,) NN(A) =
RD)NN(A). O
It follows from Propositon 3.1 and Lemma 3.1 that equivalent forms of IT;, i =

1,2, are

IT; = Ma (I, - D'CLD)Ma,, (3)
where Ma =1I,, — A’(AA’)"1A is the orthogonal projector on N/ (A), while Ca =
DMAaD/, and

I = ®o3(I, — A'CHLA) Py, (4)
where @93 = D'(DD’)~!D = &, + &; is the orthogonal projector on R(D'), while
Coz = APy A’ =Cy + 'I'L_lAlnl;lA’ =Cs +nlrr'.
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8.8. Intra- and inter-block estimators

Let us consider the quadratic forms
Yy =y'®:(I, - A'CfA)®,y = yMa(l, - D'CL{D)May
and
y'Thy =y ®3(In — A'CFA)Boy = y'@a3(I, — A'CHA)Paay.
It can easily be found that IT; A’ = 0 and I1;1, =0 for i = 1,2, and IT; D’ = 0.
It follows that y'IL;y are invariant with respect to the mean vector translations, i.e.
YILy = (y - A'a)II;(y — A'a) for any o € RY, and
E(y'Il;y) = rank(IT;)o?,
where rank(IT;) = dim{N(D) NN (A)} =n — b —rank(C;) = n — v — rank(Ca),
E(y'TLy) = tr(DII,D')o? + rank(I13)o?,
where rank(Ily) = dim{R(D’) N N(A)} = b — 1 — rank(Cz) = b — rank(N) (cf.
Calinski and Kageyama, 1991, Sections 3.1 and 3.2).
Thus y'II;y and y'I,y are unbiased estimators for rank(II;)o? and

tr(DIT;D’)o? + rank(Il;)o?, respectively. The estimators are based on the intra-
and inter-block analysis, respectively. In consequence,

~2 y'Iiy
g = MT(I—ID- (5)
and
52 = y' Iy — rank(H2)62 (6)
1= tr(DIL,D’)
are invariant quadratic unbiased estimators of o2 and o2, respectively, with
tr(DII,D’) = rank(Tl3)k if ky = ko = ... = ky = k (say). The problem that now arises

is whether these estimators are admissible within the class of all invariant quadratic
and unbiased estimators in the overall model with the covariance matrix (2). This
problem is particularly interesting from the point of view of estimating variances of
some linear estimators considered in Corollary 3.3(a) and (b) of Califiski and Kage-
yama (1991), viz. best linear unbiased estimators (BLUEs) of contrasts that can be
estimated exclusively either in the intra-block or in the inter-block analysis.
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4. Admissibility of 62 and 52

4.1. The set-up

At the begining we recall the main results concerning admissible invariant quadratic
and unbiased estimators that are applicable to the overall model considered in Section
2. The results come from Olsen et al. (1976), Gnot and Kleffe (1983) and Gnot at
al. (1992). We will be considering estimators that are invariant under the group of
transformations y — y + A’a, where a € R”. Thus we restrict the considerations to
quadratic forms y’Ay, for which AA’ = 0. Since 1,, € R(A’), we have A1, = 0 for
an invariant estimator y’Ay. It follows that instead of the model with the covariance
matrix (2) we can consider a simpler model, with

E(y) = A'T,

Cov(y) = o?D'D + 0I,. (N

Results obtained under (7) will then apply to the original model with (2) as well (see
also Califski and Kageyama, 1996, Lemma 3.1). Following Olsen at al. (1976) a
maximal invariant statistic with respect to the mean vector translations is t = By,
where B is an (n — v) X n matrix such that BB’ =I,,_, and B'B = Mj4.

Denote by a1 > ... > ag-1 > a4 = 0 the ordered sequence of the different
eigenvalues of W = BD'DB’, of rank equal to that of Cp = DB'BD’. Let W =
Ef;ll o;E; be the spectral decomposition of the matrix W. Next, consider a random
vector z = (21, 23, ..., 2a)’, wWith z; = t'E;t/v;. Here v1,vy, ..., v4 are the multiplicities
of a;’s, where oy = 0 with vy =n —v —rank(Ca) = rank(IT;) > 0. Under normality
of y the random variables z; are independent, and v;z;/(c;0%7 + ¢2) has a central
chi-square distribution with v; degrees of freedom, i = 1,2,...,d. Consider again the
matrix

Ca =DMAD' =DD’ - N/(AA’)_lN.
Since Ca = DB'BDY, it follows that the positive eigenvalues of Ca and W are the

same. Let
d—1
Ca = Z a;Ca;
i=1
be the spectral decomposition of Ca. Using the fact that if w is a normalized eigen-
vector of W corresponding to a positive eigenvalue ¢, then %DBIW is a normalized
eigenvector of Ca corresponding to that «, we find that

1 .
viz; = y'B'E;By = a—_y'MAD'CAiDMAy, i=12,..,d-1,
T
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d-1 d
Y viz =y'MaD'C{DMay, Y viz;=yMay, ®)
i=1 i=1
and hence, _
vaza = y'Ma(I, - D'CE{D)May = y'IIiy, vg = rank(II;) 9)

(cf. Gnot et al., 1992, Section 2). Let the space N (A) be decomposed as
N(A)=ND)NN(A)+R(D': A')NN(A),
and similarly the orthogonal projector Ma on M(A) as
Ma=1II; + MAD'C{DMa,,
with MAD'CE DM, being the orthogonal projector on R(D’ : A’) N N(A).
Remark 4.1. Note that
dim{R(D’: A’)NN(A)} = rank(MaD'CE{DM,) = rank(Cp),
while I, projects on
R(D)NN(A) CR(D' : A'YnN(A),
and
dim{R(D') NN(A)} = rank(Il;) =
= tr(®o3) — tr(A'CHA®y3) = b — rank(N). (10)

It follows then that

(i) Iz # 0 iff rank(N) < b,

(i) RD)NN(A) =R(D' : A’) NN (A) iff rank(N) = b — rank(Ca),
and in such a case IT; becomes equal to MaD’ CZDMA, ie.,

II; projects on R(D': A')NN(A),

rank(IT;) = rank(Ca),
and
tr(DII;D’) = tr(Ca).
Under the above assumption, as it has been mentioned by Olsen et al. (1976 p.
889), 42 coincides with the Henderson III estimator (i.e., obtained by Henderson’s

Method III) and in this case some results of Proposition 6.2 in Olsen et al. (1976)
can be applied to establish admissibility of &3.
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We assume throughout the paper that II, # 0.

It follows from Gnot and Kleffe (1983) that for a given function fio? + foo?
the entire class of admissible invariant quadratic unbiased estimators in the present
model, that with (7), coincides with the linear combinations of z; of the form

d-1
F(u,v) = Z(Alai + Ao)vw;(u, v)z; + Aavgzg, u,v >0, (11)
i=1
where w;(u,v) = [1 + 2uo; + (u? +v)a?] ™}, or
=13 v,
’_)’(00) = Z p ’zi + AgUdZd. (12)

Here \; and ), are chosen such that §(u,v) or 4(co) is unbiased for fi02 + fo0?, ie.,

d-1

Z()\lai + A)w;i(u, v)oyv; = f1 (13)
=1
and
d-1
Z()\lai + A)wi(u, v)v; + Aovg = fo (14)
i=1

for ¥(u,v), while

d—1 ’

Vi
Y =+ dhva=f (15)
— Q;

i=1

Alrank(CA) = f1, /\1

for #(c0). The estimator 7(u,v) is a Bayesian invariant quadratic unbiased estima-
tor (IQUE) with respect to the prior distribution p on (0%, 0?) such that E,(0?) =
u, Ey(0?) =1, Var,(6?) = v, Var,(0?) = 0, while J(c0) is obtained from (11) as a
unique limit of F(u,v) if v tends to infinity.

4.2. Admissibility of o2

LEMMA 4.1. The intra-block estimator (5), i.e.

52— y'ILy
rank(IIl) !

is admissible in the overall model, with (2), among all invariant quadratic and unbiased
estimators of o2.
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Proof. Taking f; =0 and f, =1 in (15), it follows from (9) and (12) that 62 = z4 =
4(o0) for 02, which establishes Lemma 4.1. O

The admissibility of 62 = 2z, has been proved in a slightly different way by Olsen
et al. [1976, Proposition 6.2(a)]. In fact &2 is the Henderson III estimator of 2.
4.3. Admissibility of 2
The problem of admissibility of the inter-block estimator (6), i.e., of
2 Yy — rank(l’Ig)&2
1= tl‘(DnzD') ’

is more complicated. Since IT; projects on R(D')NN(A) C R(D' : A')NN(A), and
MaD/CLDM, projects on R(D' : A’) NN(A) (see Remark 4.1), it follows from
(8), (11) and (12) that if 62 is admissible, then

QP

d-1

Z viciz; rank (Hz)
i=1

2 1 ki Vo 7
tr(DI,D’) “%

%1% 4(DILD)
where ¢; =0 or 1, and ¢; =1 for each i iff R(D') NN (A) =R(D': A')NN(A).
From (11) and (12) we find that

_ rank(TI5)
)‘2 - udtr(DI'I2D’) (16)
and P,
(Mog + A2)w;(u,v) = =(DILDY) (17)
for some u,v >0, i=1,...,d—1, or
A Ci .
a—i = tr(DI'IzD’)’ 1= 1, ,d 1. (18)

The case d = 2.

It has been proved by Olsen et al. (1976, p. 880) that in this case z; and 2,
constitute a set of sufficient and complete statistics, and in consequence there exists
the uniformly minimum variance invariant unbiased estimator (UMVIUE) for o0? of

the form
52 = —(z1 — ). (19)
(23]
Remark 4.2. In Baksalary et al. [1990, Corollary 1(i) and Corollary 2(i)] a full
characterization of designs for which d = 2 is given. It is shown that in this case
rank(N) = b—rank(Ca) (in that paper the symbol S, instead of Cp is used) and, fol-
lowing Remark 4.1, R(D')NN(A) = R(D' : A’)NN(A) and II; = MAD'C{DMa.
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COROLLARY 4.1. If the number d of different eigenvalues of Ca is 2, then 67 is
admissible for o3 in the overall model, with (2), and coincides with UMVIUE given
by (19).

The case d = 3.

LEMMA 4.2. If the number d of different eigenvalues of Ca is 3 and rank(N) =
b—rank(Ca), then &3 is admissible for o3 in the overall model, with (2), and coincides
with 7(u,v) given by (11) where v and v are such that

v3 + rank(II,) (20)
V3 Qg

Proof. If rank(N) = b — rank(Ca), then, from Remark 4.1 and (17), to prove the

lemma it is sufficient to show that for a pair (u,v), w >0, v > 0 satisfying (20) we

have

u2+'v=

1+ 2uay + (u? +v)a?
tl‘(DHgD’)

Aoy + Ay = (21)

and

1+ 2ucy + (u? +v)ad
tr(DII,D’) ’

with Ao = —rank(II;)/v3tr(DII;D’). Taking differences of the both sides of the above

equations we find that

Aag + Ay =

(22)

_ 2u+ (u? +v)(ag + ay)
- tr(DIT,D’)
Putting again the above to (21) and (22) we get (20). O

A1

Since under the assumption rank(IN) = b — rank(Ca) the estimator 67 coincides
with the Henderson III estimator for 02 (see Remark 4.1), the first part of the lemma
is as has been given by Olsen et al. [1976, Proposition 6.2(b)]. The second part of
Lemma 4.2 and the proof are presented here using different characterization of the
admissible estimators.

The case d > 4.

LEMMA 4.3. Ifd > 4, or if d = 4 and rank(N) = b — rank(Ca), then the estimator
&2 is inadmissible for o? in the overall model, with (2).
Proof. Suppose that 47 is admissible. First note that the condition d > 4 contradicts
(18) and that, from (17), for some nonnegative u,v

Ci .
wDILD) > T

with Ay = —rank(IIz)/[vqtr(DIIoD’)]. If rank(N) = b — rank(Ca), then ¢; = 1 for

()\1041' + Az)wi(u, U) = 1,2,...,d-1, (23)
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each i. If ¢;; = 0 for some i = ig, then

Xy
A = . 24
1= (24)

It follows that we have at most one such g, and then from (23)

)‘l(ai - aio)wi(u”v) = 7'5& 7:0) 1 < d—1.

1
tr(Dl'IgD') !
Thus a; > a;,, i.e. 49 =d — 1, and from (23) we find that

(u? +v)a? + [2u — M tr(DILD")]o; 4+ 1 — tr(DII,D')A; = 0

at least for 7 = 1, 2, 3, which, as having at most two solutions for «;, is in contradiction
with the assumptions. 0O

Remark 4.3. Since, from (3), v —rank(C,) = b—rank(Ca ), the condition rank(N) =
b — rank(Ca) is equivalent to the condition rank(N) = v — rank(C;), which holds
iff rank(C;) is equal to the multiplicity of the unit eigenvalue of C; with respect
to AA/, i.e., iff the design is orthogonal (cf. Califiski 1993, Corollary 2.1). If, in
addition, d = 2, i.e., Ca has only one distinct positive eigenvalue, then it implies and
is implied by the fact that the orthogonal design is also proper, i.e. of equal block
sizes, whether connected or not (as it follows from Califiski, 1993, Section 3). Thus
the considerations can be summarized as follows. .

COROLLARY 4.2. If the design is orthogonal and proper, then the inter-block estimator
6% is admissible for 02 in the overall model, with (2), and coincides with UMVIUE.

5. Examples

In this section we consider in details two examples of block designs for which rank(N) =
b —rank(Ca) and d > 4. On account of Remark 4.1 and Lemma 4.3, in such a case
the estimator (6) of 02 , being then of the form

d-1
2 1
= i2; — rank )
61 wC )[E v;z; — rank(Ca )z

t=1

is inadmissible, i.e., there exists a uniformly better competitor for &f.

We shall compare &2 with two admissible estimators 33(u) and 3%(c0), from
which the first is a Bayes IQUE with respect to prior distribution 7 at a given u and
v = 0 [locally best at 02 = u and 02 = 1, where u is chosen such that 52(u) dominates
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&3] while the second is the limiting Bayes IQUE given by (12) and (15) as
d—1
~ _ 1 vi +
53(c0) = ank(Ca) [,; ~% — tr(CK)adl

We would like to pay particular attention to 6%(co) as a practically useful esti-
mator of o2 because of its ”flat” variance function.

5.1. Ezample 1

Consider a design with the incidence matrix

[2 4 2 4 6
N=]121 2 3 (25)
|1 21 2 3
It can be checked that
1 1 2 3 4 5
o; | 10.4537 8 5.1019 4 0
v; 1 1 1 1 29

d=35, rank(Ca) =4, tr(Ca)=127.5556, tr(CX)=10.6667 and

~2

1
oy = m(zl + 22 + 23 + 24 — 425),

1 z 2 2 2,
~-2 _ 1 _2 3 _4 _
91() = (75537 T & t 57019 + 7 — 0-66672s)-

Note,however, that the design represented by (25) is orthogonal and connected.
As such, it provides the BLUE under the overall model, with (2), for any contrast c’r.
The variance of the BLUE, ¢'r, is then of the form Var(c't) = ¢/(AA’)~1co?, not
involving ¢% [as it follows from Corollary 3.3(a) of Califski and Kageyama (1991)].
Thus, the estimation of o is of no practical use here. It is included for comparative
reasons only.

5.2. Ezample 2

Next, consider a design with the incidence matrix N = diag{IN(1), N(2), N(3)}, where
N(1) is as given in (25), while
1 1
1 1.
1 1

N(z):[gg}, N(3)=[ i



Admissibility of the intra- and inter-block variance component estimators 23

It can be easily checked that

1 1 2 3 4 5 6 7
0y 18 [ 104537 8 |[5.1019| 4 3 0
v 1 1 1 1 1 2 66

d=7, rank(Ca)=7, tr(Ca)=>51.5556, tr(CL)=1.3889 and

a2 _
o= 51.5556(21 429+ 23+ 24+ 25 + 226 727),
53(00) = = (2L 4 22 e R 2% _ | 3880z)
1 718 ¥ 04537 © 5. 1019 3 (

Here note that the design represented by N = dlag{N(l), N(2), N(3)} is ortho-
gonal and disconnected, composed of the subdesigns, each of them being orthogonal
and connected, the first non-proper. This implies that under the overall model, with
(2), the BLUES exist for all contrasts within the subdesigns and also for the contrast
between treatments of the second and those of the third subdesign [on account of
Corollary 3.3(a), (b) and Remark 3.7 of Califiski and Kageyama (1991)]. While the
variances of the former BLUEs involve only o2, for which &2 is admissible, the va-
riance of the latter contrast involves both o2 and o2 [cf. formula (3.29) in that paper],
62 being not admissible for 2. In fact, by Corollary 4.2, &2 would become admissible
if N(1) were proper.

For the two examples, Tables 1 and 3 show the variances of 43, 53(«) and 52 (o),
and the attainable lower bound (ALB) of the variances, as functions of 0% at a given
o2 = 1. The values of ALB are defined as variances of the locally best invariant
unbiased estimators, calculated separately at each o2 and at 02 =1, i.e., at u = o}
and v = 0, where o2 runs from 0 to 100. Tables 2 and 4 show the loss l(0%) of the
variances of ¢, 63(u) and 5%(co) in comparison with the attainable lower bound.

This loss is defined according to the formula

var(o?) — ALB(0?)

UoD) = =318 100%.

As we can see, for both examples the estimator 5%(u), w1th approprlately choosen wu,
uniformly dominates 3, while %(co) is dominated by & 2 for small 0%, but becomes
better for large values of o?.
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Table 1. The variances of 2, 53(u) for u = 0.162, 52(co) and ALB, as functions of
o? (Example 1).

o2 var(éy)  var(oi(u)) var(c3(co)) ALB

0.000 0.011989 0.011987 0.017627 0.010400
0.005 0.012729 0.012727 0.018473 0.011231
0.050 0.020665 0.020663 0.027211 0.019881
0.250 0.083724 0.083653 0.090544 0.083153
0.500 0.226349 0.226032 0.225961 0.218585
0.750 0.439863 0.439123 0.423877 0.416517
1.000 0.724267 0.722927 0.684294 0.676945
1.500 1.505745 1.502672 1.392627 1.385293
2.000 2.570780 2.565266 2.350960 2.343635
3.000 5.5651528 5.5639005 5.017626 5.010311
4.000 9.666510 9.644144 8.684293 8.676983
5.000 14.915727 14.880683 13.350959 13.343653
10.000 58.175330 58.034372 51.684291 51.676991
50.000 1425.063287 1421.523666 1258.350944 1258.343651
100.000 5685.701076 5671.534726 5016.684260 5016.676968

Table 2. The loss I(0}) of the variances of 63, G3(u) for u=0.162 and 52(c0) in
comparison with ALB (Example 1).

o} i(57) 1(51(w)) 1(5%(c0))
0.000 15.275 15.256 69.488
0.005 13.340 13.326 64.487
0.050 3.942 3.934 36.867
0.250 0.687 0.602 8.888
0.500 3.552 3.407 3.374
0.750 5.605 5.427 1.767
1.000 6.991 6.792 1.086
1.500 8.695 8.473 0.529
2.000 9.692 9.457 0.313
3.000 10.802 10.552 0.146
4.000 11.404 11.146 0.084
5.000 11.781 11.519 0.055

10.000 12.575 12.302 0.014
50.000 13.249 12.968 0.001

100.000 13.336 13.054 0.000
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Table 3. The variances of 62, 52(u) for u = 0.139, 52(c0) and ALB, as functions of
o? (Example 2).

o? var(67)  var(63(v)) wvar(32(c0)) ALB

0.000 0.005826 0.005810 0.015520 0.003840
0.005 0.006224 0.006211 0.016094 0.004364
0.050 0.010754 0.010735 0.021903 0.009878
0.250 0.051432 0.050785 0.061721 0.049359
0.500 0.149456 0.146634 0.143638 0.131228
0.750 0.299899 0.293356 0.261268 0.248860
1.000 0.502760 0.490952 0.414613 0.402213
1.500 1.065738 1.038765 0.828445 0.816062
2.000 1.838390 1.790072 1.385134 1.372763
3.000 4.012716 3.903170 2.927084 2.914727
4.000 7.025738 6.830247 5.040463 5.028115
5.000 10.877456 10.571301 7.725270 7.712928
10.000 42.716484 41.486248 29.720734 29.708405
50.000 1052.255042 1021.386231  719.970163  719.957845
100.000 4201.244075 4077.712226 2868.496234 2868.483918

Table 4. The loss I(0%) of variances of 63, 3(u) for u=0.139 and 2(co) in compa-
rison with ALB (Example 2).

ol 1(57) JEHO) 1(5%(c0))
0.000 51.732 51.322 304.207
0.005 42.642 42.339 268.822
0.050 8.863 8.678 121.734
0.250 4.200 2.890 25.047
0.500 13.890 11.739 9.456
0.750 20.509 17.880 4.986
1.000 24.998 22.063 3.083
1.500 30.595 27.290 1.517
2.000 33.919 30.399 0.901
3.000 37.670 33.912 0.424
4.000 39.729 35.841 0.246
5.000 41.029 37.060 0.160

10.000 43.786 39.645 0.042
50.000 46.155 41.868 0.002

100.000 46.462 42.156 0.000
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O dopuszczalnoéci estymatoréw wewnatrzblokowego i migdzyblokowego
komponentéw wariancyjnych

STRESZCZENIE

W pracy rozwazane jest zagadnienie dopuszczalnoéci dwdch rodzajéw estymatoréw
komponentéw wariancyjnych wystepujacych w modelu randomizacyjnym stosowanym
do doéwiadczert blokowych. Udowodniono, ze estymator wewnatrzblokowy wariancji
bledéw jest dopuszczalny w klasie estymatoréw nieobciagzonych. Podano warunki do-
stateczne, przy ktérych estymator miedzyblokowy wariancji efektéw blokowych jest
dopuszczalny. Warunki te wyrazone sg poprzez funkcje macierzy incydencji ukladu.
Przedstawiono przyklady modeli, w ktérych estymator migdzyblokowy nie jest do-
puszczalny. Dla takich wypadkéw pokazano, jak mozna poprawi¢ jednostajnie ten
estymator poprzez uzycie jednego z estymatoréw dopuszczalnych.

SLOWA KLUCZOWE: dopuszczalnoéé, estymacja wewnatrzblokowa i migdzyblokowa,
estymatory komponentéw wariancyjnych, niezmiennicze kwadratowe estymatory do-
puszczalne, uklady blokowe.



